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Abstract
*" / a.

S . Present generation concurrent computers offer performance greater than vector
supercomputers and are easily programmed by non-experts. Evolution of VLSI technology
and a better understanding of concurrent machine organization have led to substantial
improvements in the performance of numerical processors, symbolic processors, and
communication networks. A 100MFLOPS arithmetic chip and a 5ps latency
communication network are under construction. Low-latency communication and task
switching simplify concurrent programming by removing considerations of grain size and
locality. A message-passing concurrent computer with a global virtual address space
provides programmers with both a shared memory, and message-based communication and
synchronization. This paper describes recent advances in concurrent computer architecture
drawing on examples from the J-Machine, and experimental concurrent computer under
development at MIT.
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ABSTRACT

Present generation concurrent computers offer performance greater than vector supercomput-
ers and are easily programmed by non-experts. Evolution of VLSI technology and a better
understanding of concurrent machine organization have led to substantial improvements in the
performance of numerical processors, symbolic processors, and communication networks. A
100MFLOPS arithmetic chip and a 5ps latency communication network are under construction.
Low-latency communication and task switching simplify concurrent programming by removing
considerations of grain size and locality. A message-passing concurrent computer with a global
virtual address space provides programmers with both a shared memory, and message-based

communication and synchronization. This paper describes recent advances in concurrent com-
puter architecture drawing on examples from the J-Machine [131, an experimental concurrent
computer under development at MIT.
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NOMENCLATURE

The following symbols are used in this paper. Where a symbol has been overloaded, its meaning
is clear from context.

A chip area(
a acceleration (m/s 2 ),
b a body,
C capacitance (F),
C set of channels,
D distance (hops),
f frequency (1/s),
g gravitational constant, 6.67 x 10-11 (Nm 2/kg 2),
k radix - the number of nodes along each dimension of a cube,
L message length (bits)
M mass (kg),
N number of bodies,
n dimension - the number of dimensions of a cube,
N set of nodes, I

P power (W),
T total time,
TC channel cycle time (s),
Tp node compute time (s),
TSF store-and-forward routing latency (s),
TwH wormhole routing latency (s),
V voltage (V), h.-

v velocity (m/s),
W channel width (bits),
z position (m),

-1. INTRODUCTION

Present generation concurrent computers offer performance greater than vector supercomputers
and are easily programmed by non-experts.

Evolution of VLSI technology and a better understanding of concurrent machine organization
have led to substantial improvements in the performance of numerical processors, symbolic
processors, and communication networks. For example, VLSI technology makes it possible to
build a single-chip 100MFLOPS numerical processor. Advances in machine organization allow
us to configure this processor in a manner that reduces its I/O bandwidth requirements to a
level that can be handled by a communication network. A machine with 2K such numerical
processors fits on 16 printed-circuit boards and gives a peak performance of 200GFLOPS. Usable
performance is estimated at 2Gr'LOPS.

Low-latency communication networks, and message-driven processor architectures simplify con-
current programming by removing considerations of locality. The use of !ow-dimensiona! net-
works and efficient routing algorithms allow us to send a 6-word (216-bit) message across the
diameter of a 4K node concurrent computer in 5jss (first bit out to last bit in). A message-driven
processor can perform a task switch in response to this message in 1ls. This low-latency commu-
nication makes program performance largely independent of how code and data are partitioned %'e
and placed on the nodes of a concurrent computer. Programmers need not be concerned with
the topology or size of the machine they are programming.

A message-passing concurrent computer with a global virtual address space combined with low-

latency networks and processors provides users with the best features of both message-passing



and shared-memory architectures. Such a machine supports the fast local memory access and
message-based synchronization/communication of a message-passing machine. At the same
time it provides the uniform naming of objects, position independence, and ability to share
code and data characteristic of a shared-memory machine. This convergence of two families of
parallel computers results in a machine that efficiently supports a broad range of concurrent
programming models.

This paper describes recent advances in concurrent computer architecture drawing on exam-
ples from the J-Machine [13], an experimental concurrent computer under development in the
Concurrent VLSI Architecture Group at MIT. Section 2 discusses object-oriented concurrent
programming. An example program for simulating the dynamics of an N-body problem is
presented. Low-latency interconnection networks are described in Section 3. It is shown that
iow-dimensional networks outperform binary n-cubes (hypercubes). To exploit the low-latency
of these networks requires processing elements that can react quickly to the arrival of messages.
The architecture of such a message-driven processor is described in Section 4., To solve prob-
lems in the physical sciences requires numerical performance. Progress towards a 10OMFLOPS
numerical processor chip is described in Section 5.

2. CONCURRENT PROGRAMMING

The Problem

Concurrent programming is often considered harder than sequential programming because of
partitioning, communication, and synchronization. If a machine is prograrnmed at a very low

"# level, concurrent programming can indeed be a difficult task, and the programs produced are
rarely portable. However, with suitable programming abstractions [12], concurrent program-
ming need be no harder than sequential programming. In this section I discuss some issues in
concurrent programming and work an example using an object-oriented concurrent program-
ming language currently under development at MIT. The hardware architecture described in
the remainder of the paper has been developed to efficiently support this style of programming.

In a concurrent program, the data must be partitioned over the nodes of a concurrent machine
and the program must be partitioned into tasks that are scheduled separately and possibly
concurrently. Most problems, however, have a natural partitioning. All programmers partition %
their data into objects (e.g., records in Pascal [35] or structures in C (20]) and their programs
into methods or procedures. If our architecture and programming system allow us to exploit
this natural partition, then partitioning is not a difficult task. The natural partition of most
programs tends to be fine grained with objects averaging 8 words and methods averaging 20
instructions [6]. To efficiently support the natural partition of most programs, an architecture
and programming system must support fine-grained concurrency.

The objects (data partitions) must be placed on the nodes of a concurrent computer. In the past,
a great deal of attention was paid to developing placements that took advantage of the underlying
machine topology [5]. Careful placement was necessary because of the slow communication
and non-uniform addressing of earl, concurrent computcrs [311. However, the development of

message passing machines with fast communications (Section 3) and a uniform global address
space (Section 4) has made placement less of an issue. In such machines a random placement
performs nearly as well as an optimum placement, and an initial placement may be improved
at runtime by object migration.

A concurrent program specifies the communication of data between partitions. In some con-
current programming systems, communication is made difficult by non-uniform naming: local
objects are referenced differently than non-local objects. In the Cosmic Kernel [34], for exam-
pie, local objects may be referenced through a pointer, while global objects require an explicit
message send and receive. Providing a global address space allows objects to be referenced via a
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single mechanism (the virtual address) regardless of their location, and relieves the programmer
of the bookkeeping required to keep track of node numbers. Programs become both easier to
write and more portable. hJ,

Synchronization is required to schedule the tasks of a concurrent program in an order that assures
correct results. In the example below, a task that computes the acceleration of a body, aj, must
be completed before a computation that integrates the acceleration to update the velocity, vi,
is run. In another program [5], a task that updates a record in a data structure must exclude
other tasks from accessing the record until the update is complete.

In a message-passing programming system [6] [1 [21, a computation is performed by sending a
message to an object (e.g., sending a, to a body). The message serves both to communicate
the required data and to schedule the task that operates on the data (e.g., computing vi). This
message-driven scheduling requires us to create a new process for each message received. On a
conventional processor, this would be a prohibitively costly operation. A processor architecture
tailored for this model of computation (Section 4), however, can perform the required process
creation and switching efficiently. Having a single, general method of synchronization, process
creation on message arrival, allows us to avoid more restricted forms of synchronization such as
barriers that lead to serial bottlenecks.

Message passing results in a good placement of tasks. By scheduling the operation to be per-
formed on the node where the body is located, the position and previous velocity of the body
can be accessed without further communication. Communication in a message-passing system
is also more efficient than in a shared-memory system (171 (31 since the communication overhead
is paid only once for an entire logical message (e.g., acceleration vector) rather than being paid
for each word transferred. .. *.

It is possible to recode an applicition to run on a concurrent computer without abandoning
all of the existing code. Approaches that attempt to translate dusty FORTRAN decks into
concurrent programs by sophisticated compilation techniques [23] [261 are limited to speedups
of ;:z 30 because the algorithm being translated is often inherently sequential even though the
problem it is solving is not. A different approach is to recode only those parts of the program
that are affected by concurrency. In a typical switch-level circuit simulation program [41, the
majority of the code comprised user interface, file I/O, and model equation routines that are
not changed in a concurrent implementation. Only those portions of the program that involve
the system-level solution must be rewritten. In the simulator these portions, the event scheduler
and path finder, comprised less than 10% of the code.

An Example

Consider the gravitational I-body problem: given iv boaes in space wiTn initiai posuou-
and velocities, compute their trajectories for a given time interval assuming that they interact

only through gravitational attraction. We will develop a program to solve this problem in

Concurrent Smalltalk (CST) [61, a concurrent programming language based on Smalltalk-80

(16]. A description of the programming language is beyond the scope of this paper.

The natural partition for the N-body problem is to define:

* an object for each body,

* a method to compute the accelerations due to the interaction of one pair of bodiesr,

* a method for integrating the acceleration on one body to compute its new position and
velocity. Ir

'We compute acceleration rather than force to correctly handle the case of zero-mass bodies.
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, ., As shown in Figure 2, we declare three classes of objects: bodies, nodes, and pairs to build theigdata structure shown in Figure 1. Each declaration specifies a class by listing its superclass and
its instance variables. In this example, the superclass of each class is Object, the root of the
class hierarchy. Comments are enclosed in double quotes, "
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"A body has position, x, velocity, v, and mass m. x and v are 3-vectors. .. "
node is the connection from the body to the data structure and " "

i is the index of the body"
Class Body (Object) I x v m node i t.

"A node in the data structure connects its parent to its two children.
The node's state records data that has been received from one child
while waiting for data from the other child."
Class Node (Object) I parent ichild uchild state.

"A pair forms a leaf of the data structure, synchronizing the data required
for the acceleration calculation
i, j - body indices, nodei, nodej - connections to data structure;
mi, mj - masses, xi, xj - positions (3-vectors), state - number received"
Class Pair (Object) I i j nodei nodej mi mj xi xj state.

Figure 2: Class declarations for the N-body problem. Objects of class body hold the state of
each body, objects of class node form the internal nodes of the data structure, and objects of
class pair form the leaves of the data structure.

Using this data structure, we compute the trajectories as follows:

1. Create and initialize an object for each body.

2. Build the data structure shown in Figure 1.

3. For each time step.

(a) Each body sends its position and mass through the data structure to all relevant
pairs.

(b) Each pair (bi, bi) computes ai, and aji. We compute all N(N - 1)/2 interactions in
parallel.

(c) Each pair sends its results through the data structure back to the bodies. The data
structure sums the partial accelerations to compute the total acceleration on each
body.

(d) Each body integrates its acceleration to update its velocity and position3 .

The computation is globally asynchronous, so execution of the different steps of this algorithm
may overlap. All synchronization is performed locally by the arrival of data. For example, at a
given point in time, some bodies may be in step 3a, others in step 3b, and others in step 3c.

Assume that we have already created and initialized a distributed collection of N objects, and
a distributed collection of N(N - 1)/2 pairs. Figure 3 shows how each body constructs a
fanout/combine tree of nodes (Figure 1). Each body first creates a root node. The body then
sends a message to the root asking to be connected to a range that includes all other nodes. The , .

tree is then recursively constructed by subdividing the range of nodes for which connections are "./- ,
to be made.

3Some integration methods may require several acceleration computations per timestep.

...... .,.|



"Build a tree of nodes that connects a body to all relev&it pairs
pairs is a distributed collection of N(N-)/2 pairs"
(Body) build: pairs
node <- Node new.

node connect: self ur: i from:O to: a with: pairs.

"Computes the index of the pair for nodes i and j"

(Integer) pairIndex: j
self < j ifTrue: [ (j*j + j)//2 + self]

ifFalse: [" (self*self + self)//2 + j].

"Recursively expand a node of the fanout/combine tree
There is no check for i-j, instead diagonal pairs always return a-O"
(Node) connect: p nr: i from: 1 to: u with: pairs

I midI
parent <- p.
mid <- 1 + u // 2.
1 a mid ifTrue: [lchild <- pairs at: (i pairIndex: 1).

lchild connect: self nr: i]
ifFalse: Ilchild <- Node new.

lchild connect: self nr: i from: 1 to: mid with: pairs].
u - (mid+l) ifTrue: [uchild <- pairs at: (i pairIndex: u).

uchild connect: self nr: i]
0 ifFalse: Euchild <- Node new.

uchild connect: self nr: i from: mid+i to: u with: pairs).

"End the recursion by connecting a pair to the data structure"
(Pair) connect: p nr: index
index - i ifTrue: [nodei <- p]

ifFalse: [nodej <- p].

Figure 3: The fanout/combine tree from a node to all related pairs is recursively constructed
by. sending the connect: ... message to a node.

Once the data structure is created, a timestep is simulated by sending each body a step message.

As shown in Figure 4, the body sends its position, mass, and index to the root node of its fanout
tree. The tree distributes this data to all related pairs without waiting for any replies. After
a pair has received data from both of its nodes, it calculates the accelerations using (1) and
sends the results up the data structure. Each node adds the accelerations received from its two
children and forwards the sum up the tree. When the body receives the total acceleration, it
integrates to compute its new velocity and position.

(-gi xi- Xi
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"Simulate motion of body for time interval dt"
(Body) step: dt -.,.
t <- dt.
node pos: x mass: m index: i.

"Fanout position, x, and mass, m, for body number i"
(Node) pos: x mass: m index: i

state <- nil.
ichild pos: x mass: m index: i.
rchild pos: x mass: m index: i.

"When position and mass are received from both bodies i and j
compute accelerations and forward down trees"
(Pair) pos: x mass: m index: index

laij aji diff dist timpi
index a i ifTrue: [xi <- x. mi <- m]

ifFalse: Cxj <-x. mj <-im).
state <- state + 1.
state a 2 ifTrue: C diff <- xi - xj.

dist <- diff abs.
timp <- (g * diff) / (dist * dist * dist).

aij <- timp negated * mj.

aji <- tmp * mi.
nodei accel: aij.
nodej accel: aji.
state <- 0).

"Each node adds the accelerations from its two children and
forwards the sum to its parent"
(Node) accel: a
state isNil ifTrue: [state <- a]

ifFalse: [parent accel: a+state].

"When a body receives its total acceleration, it integrates to
compute its velocity and position"
(Body) accel: a

V <- V + a*t.
x <- x + v*t.

Figure 4: A time step is simulated by distributing the bodies' positions to all pairs, computing
the accelerations, and integrating.

For the sake of clarity, this example has glossed over a number of subtle points:

sending by value: Smalltalk normally sends compound objects (viz. objects that do not fit
into a machine word) by reference. In this example, the position vector x is a compound
object. The program as presented will work, but to improve execution efficiency we would
like to send x by value. Concurrent Smaltalk includes a language feature to force an VA
object to be sent by value. Its use has been omitted here.

As5



distribution details: The code presented here works only for an even number of bodies, and
the handling of the diagonal pairs has been avoided. The addition of some conditional
code fixes these problems.

placement: Since no placement information is specified, the objects will be placed randomly.
Execution efficiency can be improved by refining the placement of the fanout/combine
trees to exploit locality. This task can be performed by an iterative improvement algo-
rithm based on simulated annealing [21] [33]. However, the evolution of high-performance
interconnection networks (Section 3) is making placement less of an issue.

integration: In practice a higher-order integration method with adaptive stepsize control would
be used [27],

Concurrent programming is not difficult. The majority of the code in this example is identical
to a sequential program and is concerned with the physics of the problem (e.g., the acceleration
equation), or the simulation method (e.g., the integration formula). The programming style pre-
sented here isolates the programmer from the details of the hardware. This code is transportable
across machines with different numbers of nodes, different communication topologies, and dif-
ferent node types. The programmer expends no effort on partitioning. The natural partition of
the problem is used. A minimum of effort is spent on synchronization. Most synchronization
is by message passing. The major complication faced by the programmer is the construction
of the fanout/combine tree for each node (Figures 2 and 3). At MIT we are working on the
development of abstractions that will largely automate this part of concurrent programming.

The high performance offered by concurrent computation is a strong inducement to learn this
new programming style. This solution to the N-body problem has an asymptotic speedup of
O(N 2/log N) over its sequential counterpart. The time required on a sequential computer is
0(N 2), while the time required on a concurrent machine is 0(log N). The log factor is due to
the time required by the fanout/combine trees to distribute the positions and accumulate the
accelerations. By exploiting concurrency within equations (Section 5) an additional constant
factor of speedup is attained.

A 4K node J-machine, which will fit on 16 400mm square PC boards, will compute one timestep
of a 100-body problem in ;t 50,s 4. Each timestep requires _ 1.2 x 101 floating-point calcula- "
tions for a throughput of 2.4GFLOPS. This represents a speedup of - 200 over a 10MFLOPS
mainframe, and few mainframes will achieve 10MFLOPS on such a problem.

To achieve this level of performance, a concurrent computer must efficiently execute fine grain
programs with a minimum of overhead. Of the 50ps per timestep, only 1.8ps is required to
perform an acceleration computation, and with 2K RAP chips (Section 5), all acceleration
computations are computed in 9ps. Much of the remaining 41pis is taken up by communication
and synchronization overhead. On the Cosmic Cube [31], this overhead would be 10ms. The
remainder of this paper discusses recent advances in concurrent computer architecture (fast
networks, message-driven processors, and specialized arithmetic processors) that have reduced
this overhead to a reasonable level.

'Ths n

4This number haa been estimated by counting instructions and communication delays.

' . % 6 ; ,' Z' .' 4,.d 4. *4-. " ". ... ,'',.,,:'€ ... ., . , .:'r._...:'.:./. ','v..., . -. , , .,-4..,4.-"""" . :,.



3. INTERCONNECTION NETWORKS

Efficient execution of fine grain concurrent programs requires a fast communication network.
Consider the computation graph of Figure 5. The time required to solve a problem on a concur-
rent computer is bounded below by the sum of the communication time and the computation
time along the critical path of the computation. Benchmark studies of a number of fine-grain
concurrent programs show that each local computation (vertex) typically involves executing 20
instructions (requiring a node compute time, Tp, of about 5ps). To support fine-grain concur-
rent computation, the network must have a latency (between any two nodes)< Tp and be able
to handle a message from each processing node each Tp.

Figure 5: The computation graph of a concurrent program. The vertices represent a local

computation being performed at a node of a concurrent computer. The edges represent corn- ,
munication actions between nodes. The time required to perform the computation is bounden "

below by the sum of edge and vertex times along the critical path for the computation.

Existing networks fall short of this required performance. In machines employing these networks,
several grains of computation must be grouped together to avoid excessive overhead. The result
is a reduction in concurrency. By reducing network latency, we linearly increase the amount of
concurrency we are able to exploit (for a given overhead). For example, if an iPSC (181 with
10ms latency can exploit 100-fold concurrency on a problem with a fine grain size, a J-Machine.,
with 5JUs latency can exploit 200,000-fold concurrency on the same problem. ,

VLSI systems are wire limited. The cost of these systems is predominantly that of connecting
devices, and the performance is limited by the delay of these interconnections. Thus, an inter-

connection network must make efficient use of the available wire, The topology of the network .

, must map into the three physical dimensions so that messages are not required to double back..
" on themselves, and in a way that allows messages to use all of the available bandwidth along.-

their path. Also, the topology and routing algorithm must be simple so the network switches
will be sufficiently fast to avoid leaving the wires idle while making routing decisions.

~~~Our recent findings suggest that low-dimensional k-ary n-cube interconnection networks (81 using " ,,

' ~wormhole routing (301 (191 and virtual channels [91 are capable of providing the performance "'

~required by fine-grain concurrent architectures. To test these ideas, we have constructed a
• prototype VLSI routing chip, the torus routing chip (TRC) [7), and are in the process of designing

a second chip, the network design frame (NDF) [11]. .



• " Wormhole Routing

With wormhole routing (Figure 6B) as soon as each flit (flow-control digit) of a message arrives at
a node it is forwarded to the next node. With store-and-forward routing (Figure 6A), the method

TWT

LA

IVO~ ~ lllll IT7
N, D

Time (T.)

Figure 6: The latency of store-and-forward routing (A) compared to wormhole routing (B).
Wormhole routing reduces latency from the product of IL and D to the sum of these two
components.

used by most existing concurrent computers, the entire message is received before forwarding
the packet to the next node. Using wormhole routing gives a network latency, Twt , that is the
sum of a component due to message length normalized to channel width -L, and a component
due to the distance the message must travel, D. With store-and-forward routing, on the other
hand, the latency, TsF, is the product of these two components.

TwHt Tc (L + D) (2)

TWH

L~L

TsF =Tc (W x D) ,  (3)

where Tc is the channel transmission time, L is the message length in bits, W is the channel[ ..ywidth in bits, and Dis the numberof channels the message must traverse (distance).

' Consider a concurrent computer with 64K nodes connected as a 16-ary 4-cube with 8-bit wide

channels (W = 8). Assuming no locality, the average distance a message must travel in this
machine is D = 15. For 256-bit messages, TwH = 47Tc, an order of magnitude less than
TsF = 480Tc.
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Low-Dimensional Cubes .

Many concurrent computers have been built using binary n-cube (hypercube) interconnection
networks because these networks are optimal when all channels are considered equal. However,
considering a channel in a binary n-cube to be equal to a channel in a low-dimensional network
is not a reasonable assumption. Because binary n-cubes have long wires and high bisection
widths their channels are typically narrower and slower than the channels in a low-dimensional
network. When these factors are taken into account, the low-dimensional networks out-perform
the high-dimensional networks.

Consider the networks show"n in Figurc 7. Suppose the binary 6-cube has 4-bit wide chaaaels
(as in the Caltech Cosmic Cube [31]). An 8-ary 2-cube with 16-bit wide channels has the same
wiring complexity. With wormhole routing and 256-bit messages the 6-cube has a latency of
67TC while the 2-cube has a latency of only 20Tc. Increasing the radix, k, of a k-ary n-cube while
holding wiring complexity (bisection width) constant increases both W oc k and D oc km. This
decreases the component of latency due to message length, I4, while increasing the component
due to distance, D. The minimum latency occurs when these two components are nearly equal
(Figure 8). For L - 200 the optimum dimension, n, is two for up to 1K nodes and three for 1K
to 32K nodes, and four for 32K to 1M nodes.

The throughput of a network is the maximum number of messages that can be delivered per unit
time. It is often expressed as a fraction of the network's capacity, the number of messages that
would be delivered if every channel of the network was fully used. As the amount of traffic in
the network increases, the latency of a message is increased. The latency given by (2) assumes .

an unloaded network.

A -

Figure 7: Two 64-node k-ary n-cubes: an 8-ary 2-cube (A) and a binary 6-cube (B). Network
A has a bisection width of 16 channels while B has a bisection width of 64 channels. Thus
the channels in A can be made four times as wide as the channels in B for the same wiring
complexity.

.1



, . "160

140
L 120

a
t 100

80 0 25 Nodes

Y 60 16K Nodes

IM Nodes

40

20 
•

0 5 10 15 20

Dimension. n
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We have recently developed a queueing model of k-ary n-cube wormhole networks that accurately
predicts the latency as a function of network traffic, and allows us to calculate the maximum
throughput for a given network configuration [8]. Figure 9 shows how latency varies with
traffic for a 32-ary 2-cube (1024 nodes). The solid line is the predicted latency. The points are
measurements taken from a simulator. The model agrees with the simulation within 5%, with the
model being slightly pessimistic, until the network approaches saturation. Latency increases less
than 20% as traffic is increased from zero to 30% capacity. Saturation (maximum throughput)
occurs at 40% capacity.

Low-dimensional networks have several other advantages.

* Because wires are shorter, the channels in these networks typically operate faster than in

I' high dimensional networks, increasing throughput and further decreasing latency.

9 Low-dimensional networks have better queueing performance. If one thinks of channels as
being servers, these networks have fewer servers with greater capacity resulting in a lower
average service time.

9 Because the control logic for a network switch typically scales with the number of di-
mensions, the switches for low-dimensional networks are simpler than those for high-
dimensional networks.

Virtual Channels

Until recently there was no known algorithm for deadlock-free routing in k-ary n-cube, wormhole

networks. The conventional structured buffer pool algorithms that are used in store-and-forward
networks are not applicable to networks that use wormhole routing. These algorithms interleave
the items being buffered (packets in a store-and-forward network), but wormhole networks buffer
flits that cannot be interleaved.

We have recently developed a new class of algorithms for deadlock free routing based on the
concept of virtual channels. Shown in Figure 10, virtual channel algorithms operate by restricting
routing rather than by restricting buffer allocation. To do this requires that routing be a function
of the channel a message arrives on and the destination node, C x N '-* C, rather than the node a
message is on and the destination node, N x N -+ C. Projecting this function gives a dependency
relation among channels. By multiplexing several virtual channels on each physical channel we
can restrict routing in a manner that avoids deadlock without loosing strong connectivity. A
set of virtual channels all share the same physical wires. Each virtual channel requires only a
single flit buffer. The virtual channel method can be used to route deadlock free in any strongly
connected network [9].

The Torus Routing Chip

The Torus Routing Chip (TRC), shown in Figure 11, is a self-timed [29] VLSI chip that performs
wormhole routing in k-ary n-cube networks, and uses virtual channels to prevent deadlock [7].
A single TRC provides 8-bit data channels in two dimensions and can be cascaded to add more

dimensions. A TRC network can deliver a 150-bit message in a 1024 node 32-ary 2-cube with
an average latency of 7.5us.

:.. ,:. ....-. ,.,.
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Figure 10: Considering routing to be a function C x N -+ C rather than the conventional
N x N p-+ C deadlock corresponds to cycles in the channel dependency graph (right) rather
than the interconnection graph (left). By multiplexing two virtual channels on each physical
channel, we can restrict the routing function to eliminate deadlock (bottom).

The Network Design Frame

We have recently undertaken the design of the Network Design Frame (NDF) [11] which we
plan to use for the interconnection network of the J-Machine. The circuitry of the NDF will be
integrated into the pad-frame of a VLSI chip. The center of the chip is left uncommitted to be
used for the circuitry of a network node. We plan to use the NDF to perform communication
for the MDP (Section 4) and the RAP (Section 5).

The NDF incorporates a partitioned switch architecture, bidirectional data channels, and low-
voltage output drivers to achieve a worst-case latency of 5,Us in a 4K node 64-ary 2-cube. In the
partitioned switch architecture, shown in Figure 12, the routing logic is partitioned into two-way
switches. The partitioned switch's data paths and control logic are simpler (and thus smaller
and faster) than the centralized crossbar design used in the TRC. A signal passes through only
10 gate delays from input to output for a propagation delay of 20ns (estimated).

Bidirectional data channels are used in the NDF to reduce latency and to exploit locality.
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Figure 12: By using a partitioned datapath (right) the NDF requires less area and runs faster
than the TRC which uses a centralized crossbar switch (left).

Because wire density is a major limitation, the two directions of communication will share the
same data wires. While the NDF is constructed using CMOS technology, communication on
these bidirectional data wires uses ECL signal levels to improve speed, reduce power dissipation,
and reduce noise. The NDF uses low-voltage swing output pads based on a design by Tom Knight
[22]. Reducing the voltage swing by a factor of 5 makes these pads 5 times as fast as conventional
pads. Also, because power goes as the square of voltage, P = CV2 f, these pads dissipate 1/25
(4%) as much power as conventional pads. Since much of the power in the machine goes into
driving the inter-node wires, this savings represents a considerable reduction in total power
dissipation.

4. SYMBOLIC PROCESSING ELEMENTS

To support the fine-grained concurrent programming model discussed in Section 2, a processing
element must:

* perform rapid context (task) switching,

e perform rapid message handling (buffering and scheduling),

* support a global address space.

Conventional instruction processors are ill-suited to serve as processing nodes in a concurrent
S',computer. Their I/O systems are designed to handle high-latency peripherals (e.g., disks) and

S"thus they respond slowly (- 100 instruction times) to messages arriving over the network. Also,
their register-oriented instruction sets, designed to match a fast processor with a slow memory in
programming environments where context switches are infrequent (1 in - 25000 instructions),
are not appropriate in a processing node containing a fast local memory and in an environmentwhere context switches happen every 20 instructions.



The solution adopted in many machines is to increase the memory size of the node so a larger part
of the problem can be performed in each node. This has the effect of reducing the concurrency
to a point where the number of instructions executed between messages approaches 10. This
increases the perceived efficiency from 20% to 90%. Efficiency is often measured in units of -L

T
where Tp is time spent on useful work and T is total time. This measure of efficiency, however,
ignores the cost of the node. If instead we measure efficiency in units of 7, where A is the
total chip area of the node, the actual efficiency has been reduced by making the node larger.
To truly increase the efficiency, we must build small, efficient nodes.

At MIT, we are developing the message-driven processor (MDP), a small, efficient processing
node for a message-passing concurrent computer (10]. It is designed to support fine-grain con-
current programs by reducing the overhead and latency associated with receiving a message, by
reducing the time necessary to perform a context switch, and by providing hardware support
for object-oriented concurrent programming systems.

MU ItT

Network

Interface Data Path Memory

Figure 13: Block diagram of a message-driven processor (MDP). The message unit (MU) sched-
ules messages, deciding whether to execute or buffer each arriving message. The instruction
unit (IU), controls execution of instruction sequences used to carry out the functions requested
by messages.

Message handling overhead is reduced by directly executing messages rather than interpreting
them with sequences of instructions. As shown in Figure 13, the MDP contains two control units,
the instruction unit (IU) that executes instructions and the message unit (MU) that executes
messages. The MU performs message reception and task scheduling in hardware. When a
message arrives it is examined by the MU which decides whether to queue the message or to
execute the message by preempting the IU. Messages are enqueued without interrupting the IU.
Message execution is accomplished by immediately vectoring the IU to the appropriate memory
address. Special registers are dedicated to the MU so no time is wasted saving or restoring state
when switching between message and instruction execution.

Context switch time is reduced by making the MDP a memory rather than register based
processor. Each MDP instruction may read or write one word of memory. Because the MDP
memory is on-chip, these memory references do not slow down instruction execution. Four
general purpose registers are provided to allow instructions that require up to three operands to
execute in a single cycle. The entire state of a context may be saved and restored in less than
12 clock cycles. Two register sets are provided, one for each of two priority levels, to allow low .5.

priority messages to be preempted without saving state.



eAn MDP word is 36-bits: a 4-bit tag and a 32-bit datum. Tags are used both to support
dynamically-typed programming languages and to support concurrent programming constructs
such as relocatable objects and futures.

The MDP is intended to support a fine-grain, object-oriented concurrent programming system
in which a collection of objects interact by passing messages. In such a system, addresses are
object names (identifiers). Execution is invoked by sending a message specifying a method to
be performed, and possibly some arguments to an object. When an object receives a message
it looks up and executes the corresponding method. Method execution may involve modifying
the object's state, sending messages, and creating new objects. Because the messages are short
(typically 6 words), and the methods are short (typically 20 instructions) it is critical that the
overhead involved in receiving a messagc and in switching tasks to cxccutc thc method be kept
to a minimum. In the MDP, the sum of these two overheads is less than 1 ps.

Rather than providing a large message set hard-wired into the MDP, we implement only a
single primitive message, EXECUTE. This message takes as arguments a priority level (0 or 1),
an opcode, and an optional list of arguments. The message opcode is a physical address to
the routine that implements the message. More complex messages, such as those that invoke a
method or dereference an identifier, can be implemented almost as efficiently using the EXECUTE
message as they could if they were hard-wired. We choose not to implement complex messages
in microcode because they will run just as fast using macrocode and implementing them in
macrocode gives us more flexibility. Since the MDP is an experimental machine we place a high
value on providing the flexibility to experiment with different concurrent programming models
and different message sets, and to instrument the system. For example, we can patch the CALL
firmware to measure the number of CALL messages received by each node.

The MDP memory can be accessed either by address or by content, as a set-associative cache.
Cache access is used to provide address translation from object identifier to object location.
This translation mechanism is used to support a global address space. Object identifiers in the
MDP are global. They are translated at run time to find the node on which the object resides
and the address within this node at which the object starts.

Because the MDP maintains a global name space, it is not necessary to keep a copy of the
program code (and the operating system code) at each node. In fact, a copy of the entire
operating system will not fit into a node's memory. Each MDP keeps a method cache in its
memory and fetches methods from a single distributed copy of the program on cache misses.

A block diagram of the MDP memory is shown in Figure 14. The memory system consists of a
memory array, a row decoder, a column multiplexor and comparators, and two row buffers (one
for instruction fetch and one for queue access). Word sizes in this figure are for our prototype
which will have only 1K words of RAM.

* In the prototype, the memory array will be a 256-row by 144-column array of 3 transistor
DRAM cells. In an industrial version of the chip, an 8K word (or larger) memory is feasible.
We wanted to provide simultaneous memory access for data operations, instruction fetches, and
queue inserts; however, to achieve high memory density we could not alter the basic memory
cell. Making a dual port memory would double the area of the basic cell. Instead, we have
provided two row buffers that cache one memory row (4 words) each. One buffer is used to hold
the row from which instructions are being fetched. The other holds the row in which message
words are being enqueued.

Some may argue that the MDP is unbalanced according to the rule of thumb stating that a
IMIP processor should have a 1MByte memory. The MDP is an 4MIP processor and only
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Figure 14: The MDP memory adds functionality in its peripheral circuitry while preserving the
density of a simple memory array. Associative access is implemented by designing comparators
into the column multiplexor. Row buffers for the message queue and instruction stream increase
the effective memory bandwidth.

has a 36KByte memory. We argue however that it is not the size of the memory in a single node
that is important, but rather the amount of memory that can be accessed in a given period
of time. In a 64K node machine constructed from MDPs and using a fast routing network, a
processor will be able to access a uniform address space of 229 words (231 Bytes) in less than
lops.

In-& concurrent, object-oriented programming system, programs operate by sending messages to
objects. Each method results in the execution of a method. The MDP supports this model of
programming with the CALL and SEND messages. The execution sequence for a CALL message is
shown in Figure 15. The first word of the message contains the priority level (0), and the physical
address of the CALL subroutine. If the processor is idle, in the clock cycle following receipt of
this word, the first instruction of the call routine is fetched. The CALL routine then reads the
object identifier for the method. This identifier is translated into a physical address in a single
clock cycle using the translation table in memory. If the translation misses, or if the method
is not resident in memory, a trap routine performs the translation or fetches the method from
a global data structure. Once the method code is found, the CALL routine jumps to this code.
The method code may then read in arguments from the message queue. The argument object
identifiers are translated to physical memory base/length pairs using the translate instruction.
If the method needs space to store local state, it may create a context object. When the method -
has finished execution, or when it needs to wait for a reply, it executes a SUSPEND instruction
passing control to the next message.
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Figure 15: The CALL message invokes a method by translating the method identifier to find the
*code, creating a context (if necessary) to hold local state, and translating argument identifiers

to locate arguments.

The MDP provides many of the advantages of both message-passing multicomputers and shared-
memory multiprocessors. Like a shared-memory machine, it provides a single global name
space, and needs to keep only a single copy of the application and operating system code. Like
a message-passing machine, the MDP exploits locality in object placement, uses messages to
trigger events, and gains efficiency by sending a single message through the network instead of
sending multiple words. While we plan to implement an object-oriented programming system
on the MDP, we also see the MDP as an emulator that can be used to experiment with other
programming models.

5. NUMERICAL PROCESSING ELEMENTS

The performance of VLSI arithmetic chips is limited by the available I/O bandwidth, not by
circuit speeds or circuit densities. With existing technology one can implement a full adder cell
in ; 5KA2 (A is half the minimum line width (251) area with a worst case delay of Ins. Using
such adders one can easily construct a 100MFLOPS pipelined floating-point adder/multiplier
in an area of 32MA' which would fit comfortably on a single chip. The problem, however, is to
transfer the 300 million 64-bit operands and results on and off the chip each second. The required
bandwidth of - 20Gbits/sec exceeds the capabilities of available packaging technologies.

The I/O bandwidth of a 100MFLOPS arithmetic chip can be reduced to a manageable level
of ; 2Gbits/sec by exploiting the locality inherent in the problems that use floating-point
arithmetic. Most algorithms that make heavy use of floating-point do so in equations that
involve between 10 and 50 arithmetic operations. Within each equation there is considerable
locality. The result of one arithmetic operation feeds directly into the input of the next operation.
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We can exploit this locality by constructing a number of small, slow floating point units and
xrhaining them together using a reconfigurable switch. In the same area us'd to construct one

-100MFLOPS pipelined unit we can construct 16, 6.25MFLOPS nibble-serial units. (In fact ""
we can do considerably better since the nibble serial approach is more efficient.) Because the

,-nibble-serial units are not pipelined and individually have narrow (4-bit wide) data paths they
:can be efficiently chained together to directly implement an equation. Without pipelining, the
.. result of one operation is immediately available to be used as input during the next operation
-*--cycle. In a pipelined design, the result is not available for several operation cycles and other
.:.ata must be found to keep the pipeline busy. The 4-bit wide data paths allow us to construct

switch that requires 2- ' times as much area as a 64-bit wide switch. This equation chaining
is similar in some respects to the vector chaining performed by the vector pipelines of some

Qsupercomputers (28].

i In addition to exploiting locality, equation chaining also allows us to efficiently exploit concur-
- rrncy at the operation level. By statically scheduling all of the operations within an equation
- we avoid the overhead of synchronizing on each operation as is done in a dataflow machine [14].

FPU 0
NETWORK
INTERFACE FPU 1

SWITCH :
REGISTERS

anda

MEMORYFPU 15

FPUIS

. Figure 16: The Reconfigurable Arithmetic Processor (RAP) exploits the locality in equations
to package 100MFLOPS on a chip while limiting I/O bandwidth to 10 % of that required by
.a conventional floating point processor. The RAP consists of a number (= 16) nibble-serial
-flbating point units connected by a statically reconfigurable switch. A register file and local
-memory are used to buffer problem instances.

Instead, we synchronize only once for the entire equation and then clock the data in lockstep
through the function units as is done in a systolic array [24].

To test the idea of equation chaining we are developing a Reconfigurable Arithmetic Processor
(RAP) chip [15]. In the RAP, 16 nibble-serial, floating-point function units are interconnected .-
by a statically reconfigurable switching network. By changing the switch settings the chip can
switch between different equations, or successive stages of a complex equation. As shown in
Figure 16, the chip also includes a number of registers and a small amount of memory for
buffering problem instances.
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Figure 17: RAP test chip incorporates 12, 16-bit fixed point arithmetic units, a statically
reconfigurable switch, and two register ifies.

The highest ratio of performance to area occurs wben an arithmetic operation is broken down
into a unit that can just be completed in a single cycle of the fastest clock that could be

* distributed to the unit, smy 5ns. Most comnmercial floating-point chips (e.g., thos- manufactured
by Weitek) are implemented as a combinational function unit broken into two or three pipeline

= stages to improve throughput. Since the delay through each stage is much longer than the
synchronization period for the chip, only a narrow wavefront of logic is active at any one time.
The majority of the logic is idle.

To more efficiently use silicon area, the RAP uses nibble-serial arithmetic units. Because the
carry paths in these units are shorter, we can clock them faster and keep more of the silicon
busy at a given instant in time. While these units will take 16 clock periods to complete a single
multiply operation, we can safely run them at clock rates of 100MHz giving a performance per
unit of 6.25 MFLOPS.

A RAP test chip has been implemented to test several RAP components. Shown in Figure 17
* this chip consists of 12, 16-bit di-bit serial, fixed-point arithmetic units connected by a statically

reconfigurable sparse crossbar switch. Two register files store input and output operands and
perform parallel-serial and serial-parallel conversion. This chip was designed by MIT students
Stuart Fiske, Josef Shaoul, and Petr Spacek.

* Consider the N-body problem described in Section 2. For each pair of bodies, b,, and, b,, one
must compute the accelerations a,, and a1, using (1). The data flow graph for this calculation
is shown in Figure 18. At compile time, the equation is translated to the data-flow graph.
The graph is optimized to eliminate common subexpressions and to minimize the expression
depth. The graph is then translated to a sequence of switch settings for the RAP. At runtime
the RAP receives a message containing the cquation's arguments and a continuation. The RAP
then sequences the data through the function units to perform the calculation. The results are
transmitted in a message as specified by the continuation.
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Figure 18: Data-flow graph for the acceleration calculation of the N-body problem. This calcu-

lation requires 22 arithmetic operations and 14 words of I/O. It can be performed on a RAP in I I

operation cycles giving an arithmetic rate of 37MFLOPS and an I/O bandwidth of 51OMbits/sec.

This computation requires 22 arithmetic operations: five add/subtracts, fifteen multiplies, one
reciprocal, and one square root. It takes eight arguments and produces six results. Performing
this operation using chained arithmetic units requires a total of 14 words of I/O compared with
64 words that would be required if the operation were performed using word parallel arithmetic
units. This data flow graph has depth 9 and requires 11 operation cycles (the reciprocal and
square root both require 3 cycles) on a RAP. With an operation rate of 6.25MHz the latency of
the calculation is 1.8s. The average concurrency is 5.9 operations/cycle (37MFLOPS) and the
required I/O bandwidth is 81 bits/cycle, 51OMbits/sec. Synchronization overhead reduces the
arithmetic rate and increases the I/O bandwidth slightly. On this problem the RAP achieves
;z 37% of its peak performance with an I/0 bandwidth that is well-matcav'd to the capabilities
of our interconnection network.

6. CONCLUSION

Recent advances in the design of interconnection networks, symbolic processors, and arithmetic
processors have been described:

" Low-dimensional k-ary n-cube networks that use wormhole routing and virtual channels
can send a 6-word message across the diameter of a 4K-node concurrent computer in 5/ss.
These low-dimensional networks (8 < k < 64 and 2 < n < 4) outperform binary n-cubes
(k 2) because they balance the component of latency due to message length with the
component due to distance. These networks are implemented with VLSI chips such as
the TRC [7] and the NDF [11] that perform all routing and buffering internally using no
memory bandwidth or CPU time on intermediate nodes.



: ... The Message-Driven Processor (MDP) can perform a task switch on message arrival in
lps. The MDP performs message reception, buffering, and scheduling in hardware to
eliminate the software overhead of i0 0pus or more associated with these functions. Task
switches are performed quickly because the MDP is memory rather than register based.
The MDP memory provides both associative and indexed access. The associative access is
used to support a global virtual address space needed to support concurrent programming
systems.

e The Reconfigurable Arithmetic Processor (RAP) exploits the locality inherent in equations
. to achieve high arithmetic performance (100MFLOPS) with low I/O bandwidth. With

today's VLSI technology, arithmetic performance is limited by I/O bandwidth rather than
by the amouit of logic Lha canu be packaged ou a single chip. The RAP executes equations
asynchronously (in response to messages) and synchronously executes operations within
an equation. This approach allows the RAP to exploit concurrency at the level of single
arithmetic operations (e.g., x or +) without incurring a costly synchronization overhead
on each operation.

In addition to improving performance, these developments are making concurrent computers
easier to program : ....... .... ..... ...... .. ....

.:A global virtual address space in combination with a fast communication network allows
programmers to operate on data independent of its location. Programmers need not be
concerned with the physical topology of the machine they are using or with the mapping
of their problem onto the nodes of the machine. Their only concern is with the logical
structure of their problem.

e A processor that supports a fast task switch in reponse to a message allows programs to
be broken into extremely fine grains (as small as 20 instructions) without loss of efficiency.
This permits programmers to decompose a program into its natural units: objects (e.g.,
particles) and methods (e.g., force calculation).

* Message passing provides a simple and powerful synchronization mechanism. Programmers
need not be concerned with locks, semaphores, or monitors. Operations are scheduled by
the arrival of the message(s) containing the required data.

Concurrent programming is not difficult if suitable abstractions are used. Programmers should
use the natural partition of the problem and not be concerned with placement. Synchronization
can be performed by allowing the data flow of the program to sequence the required opera-
tions. As this technology matures, we expect to see abstractions for concurrency that will make
concurrent programming no more difficult than sequential programming.

This paper has drawn on examples from the J-Machine, a message-passing concurrent computer
under development at MIT. We expect to complete the construction of a prototype J-Machine
in 1990. The status of the project at the time of this writing (June 1987) is as follows:

* the design of the NDF is complete, and a test chip (no node logic) is being fabricated;

a- .%. * a RAP simulator is complete, and a RAP test chip (Figure 17) is being fabricated;

9 instruction-level and register-transfer-level simulators for the MDP are complete, and por-

tions of the datapaths and memory have been laid out;

" I



Many challenging problems in the design of hardware and software for concurrent computers
remain. A major research area is the design of fault tolerant systems. While we can construct
a 4K node machine with an MTBF of 2400 hours (4K chips at 100FITS), future machines may
have MTBFs of only a few hours and will require architectures that can survive node and link
failures without loss of data.

Concurrent software systems are still quite primitive. Abstractions for concurrency that ex-
press common patterns of computation while hiding the details of implementation are required.
Compilers should perform optimizations that expose concurrency in programs and automate the
placement of objects onto processing nodes. To exploit chips like the RAP, compilers that map
equations onto function units are needed. We also need compile-time and run-time resource
management technolgy to regulate the concurrency in programs to match the available comput-
ing resources. Concurrent software technology must mature for these powerful machines to see
widespread use.
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